Karin van der Wiel

www.karinvanderwiel.nl | wiel@knmi.nl | +31 (0)30 2206 783

Hi, I'm Karin.

I work as a postdoctoral research scientist at the Royal Netherlands Meteorological Institute (KNMI).

My general research interests include atmospheric dynamics, atmosphere-ocean interactions, extreme events, regional weather and the impact of weather on society. Most of my research focuses is on how internal climate variability and climate change might impact these topics.

I hope to contribute to increasing our understanding of Earth’s weather and climate in a way that is useful for society.

Please be in contact with any questions, requests for PDFs of publications or anything else.

Research projects

Extreme precipitation

Mild weather

Diagonal convergence zones

Converging sea breezes


In review

xiv. S Philip, S Sparrow, SF Kew, K van der Wiel, N Wanders, R Singh, A Hassan, K Mohammed, H Javid, K Haustein, FEL Otto, F Hirpa, RH Rimi, AKM Saiful Islam, DCH Wallom, and GJ van Oldenborgh: Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives. Hydrology and Earth System Sciences Discussions.

+ Show abstract


xiii. L Krishnamurthy, GA Vecchi, X Yang, K van der Wiel, V Balaji, SB Kapnick, L Jia, F Zeng, K Paffendorf, S Underwood (2018): Causes and probability of occurrence of extreme precipitation events like Chennai 2015. Journal of Climate, 31, pp. 3831–3848.

+ Show abstract

xii. FEL Otto, K van der Wiel, GJ van Oldenborgh, S Philip, S Kew, P Uhe, H Cullen (2018): Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond - a real-time event attribution revisited. Environmental Research Letters, 13, pp. 024006.

+ Show abstract            > pdf

xi.  GJ van Oldenborgh, K van der Wiel, A Sebastian, R Singh, J Arrighi, FEL Otto, K Haustein, S Li, GA Vecchi, H Cullen (2017): Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 12, pp. 124009. Featured article.

+ Show abstract            > pdf

x. K van der Wiel, ST Gille, SG Llewellyn Smith, PF Linden, C Cenedese (2017): Characteristics of colliding sea breeze gravity current fronts: a laboratory study. Quarterly Journal of the Royal Meteorological Society, 143, pp. 1434-1441.

+ Show abstract

ix. K van der Wiel, SB Kapnick, GJ van Oldenborgh, K Whan, S Philip, GA Vecchi, RK Singh, J Arrighi, H Cullen (2017): Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrology and Earth System Sciences, 21, pp. 897-921. Highlighted article.

+ Show abstract            > pdf

viii. K van der Wiel, SB Kapnick, GA Vecchi (2017): Shifting patterns of mild weather in response to projected radiative forcing. Climatic Change, 140, pp. 649-658.

+ Show abstract            > pdf

vii. K van der Wiel, SB Kapnick, GA Vecchi, WF Cooke, TL Delworth, L Jia, H Murakami, S Underwood, F Zeng (2016): The resolution dependence of contiguous U.S. precipitation extremes in response to CO2 forcing. Journal of Climate, 29, pp. 7991-8012.

+ Show abstract            > pdf

vi. MA Stiller-Reeve, C Heuzé, WT Ball, RH White, G Messori, K van der Wiel, I Medhaug, AH Eckes, A O'Callaghan, MJ Newland, SR Williams, M Kasoar, HE Wittmeier and V Kumer (2016): Improving together: better science writing through peer learning. Hydrology and Earth System Science, 20, pp. 2965-2973.

+ Show abstract            > pdf

v. K van der Wiel, AJ Matthews, MM Joshi, DP Stevens (2016): The influence of diabatic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow. Quarterly Journal of the Royal Meteorological Society, 142, pp. 901-910.

- Hide abstract
The South Pacific Convergence Zone (SPCZ) is a northwest-southeast oriented precipitation band over the South Pacific Ocean. Latent heat release from condensation leads to substantial diabatic heating, which has potentially large impacts on local and global climate. The influence of this diabatic heating within the SPCZ is investigated using the Intermediate General Circulation Model (IGCM4).
Precipitation in the SPCZ has been shown to be triggered by transient Rossby waves that originate in the Australian subtropical jet and are refracted towards the equatorial eastern Pacific. A Rossby wave triggers a SPCZ 'convective event', with associated diabatic heat release and vortex stretching. Consequently, the Rossby wave is dissipated in the SPCZ region. These features are simulated well in a control integration of IGCM4.
In an experiment, convective heating is prescribed to its 'climatological' value in the SPCZ region during the Rossby wave 'events' and dynamic forcing from Rossby waves is decoupled from the usual thermodynamic response. In this experiment Rossby waves over the SPCZ region are not dissipated, confirming the vortex stretching mechanism from previous studies. Furthermore, the change in Rossby wave propagation has an impact on momentum transport. Overall, the effect of the Rossby wave-induced convection in the SPCZ is to decrease the strength of the Pacific subtropical jet and the equatorial eastern Pacific upper-tropospheric westerlies, by about 2–6 m s−1.
Following these changes to the basic state, two potential feedbacks in the SPCZ and larger Pacific climate system are suggested: increased SPCZ convection due to the enhancement of negative zonal stretching deformation in the SPCZ region and decreased equatorward refraction of Rossby waves into the westerly duct leading to less SPCZ 'events'. As the convective events in the SPCZ have a significant impact on Pacific mean climate, it is crucial that the SPCZ is represented correctly in climate models.

iv. K van der Wiel, AJ Matthews, MM Joshi, DP Stevens (2016): Why the South Pacific Convergence Zone is diagonal. Climate Dynamics, 46, pp. 1683-1698.

+ Show abstract

iii. K van der Wiel, AJ Matthews, DP Stevens, MM Joshi (2015): A dynamical framework for the origin of the diagonal South Pacific and South Atlantic Convergence Zones. Quarterly Journal of the Royal Meteorological Society, 141, pp. 1997-2010. Featured article.

+ Show abstract

ii. MM Joshi, M Stringer, K van der Wiel, A O'Callaghan, S Fueglistaler (2015): IGCM4: A fast, parallel and flexible intermediate climate model. Geoscientific Model Development, 8, pp. 1157-1167.

+ Show abstract            > pdf

i. W Hazeleger, X Wang, C Severijns, S Ştefănescu, R Bintanja, A Sterl, K Wyser, T Semmler, S Yang, B van den Hurk, T van Noije, E van der Linden, K van der Wiel (2012): EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Climate Dynamics, 39, pp. 2611-2629.

+ Show abstract

+ Show more publications

Curriculum Vitae

A pdf-version of my C.V. is available here.


Dr Karin van der Wiel
Royal Netherlands Meteorological Institute
Postbus 201
3730 AE De Bilt

Phone: +31 (0)30 2206 783
E-mail: wiel@knmi.nl

Google Scholar: list of publications
ResearchGate: personal profile
Twitter: karin_vdwiel