Karin van der Wiel

www.karinvanderwiel.nl | wiel@knmi.nl | +31 (0)30 2206 783




Hi, I'm Karin.

I work as a postdoctoral research scientist at the Royal Netherlands Meteorological Institute (KNMI).

My general research interests include atmospheric dynamics, atmosphere-ocean interactions, extreme events, regional weather and the impact of weather on society. Most of my research focuses is on how internal climate variability and climate change might impact these topics.

I hope to contribute to increasing our understanding of Earth’s weather and climate in a way that is useful for society.

Please be in contact with any questions, requests for PDFs of publications or anything else.


Research projects

Extreme precipitation

Mild weather

Diagonal convergence zones


Converging sea breezes


Publications

Peer-reviewed

xiii. L Krishnamurthy, GA Vecchi, X Yang, K van der Wiel, V Balaji, SB Kapnick, L Jia, F Zeng, K Paffendorf, S Underwood (2018): Causes and probability of occurrence of extreme precipitation events like Chennai 2015. Journal of Climate, 31, pp. 3831–3848.

+ Show abstract

xii. FEL Otto, K van der Wiel, GJ van Oldenborgh, S Philip, S Kew, P Uhe, H Cullen (2018): Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond - a real-time event attribution revisited. Environmental Research Letters, 13, pp. 024006.

+ Show abstract            > pdf

xi.  GJ van Oldenborgh, K van der Wiel, A Sebastian, R Singh, J Arrighi, FEL Otto, K Haustein, S Li, GA Vecchi, H Cullen (2017): Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 12, pp. 124009. Featured article.

- Hide abstract            > pdf
During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused particularly extreme precipitation over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm/3dy at Baytown, is more than 9,000 years (97.5% one-sided confidence interval) and return periods exceeded 1,000 yr (750 mm/3dy) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1°C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2xCC scaling, the second 1xCC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8% to 19%) more intense, or equivalently made such an event three (1.5 to 5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston's flood protection system.

x. K van der Wiel, ST Gille, SG Llewellyn Smith, PF Linden, C Cenedese (2017): Characteristics of colliding sea breeze gravity current fronts: a laboratory study. Quarterly Journal of the Royal Meteorological Society, 143, pp. 1434-1441.

+ Show abstract

ix. K van der Wiel, SB Kapnick, GJ van Oldenborgh, K Whan, S Philip, GA Vecchi, RK Singh, J Arrighi, H Cullen (2017): Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrology and Earth System Sciences, 21, pp. 897-921. Highlighted article.

+ Show abstract            > pdf

viii. K van der Wiel, SB Kapnick, GA Vecchi (2017): Shifting patterns of mild weather in response to projected radiative forcing. Climatic Change, 140, pp. 649-658.

+ Show abstract            > pdf

vii. K van der Wiel, SB Kapnick, GA Vecchi, WF Cooke, TL Delworth, L Jia, H Murakami, S Underwood, F Zeng (2016): The resolution dependence of contiguous U.S. precipitation extremes in response to CO2 forcing. Journal of Climate, 29, pp. 7991-8012.

+ Show abstract            > pdf

vi. MA Stiller-Reeve, C Heuzé, WT Ball, RH White, G Messori, K van der Wiel, I Medhaug, AH Eckes, A O'Callaghan, MJ Newland, SR Williams, M Kasoar, HE Wittmeier and V Kumer (2016): Improving together: better science writing through peer learning. Hydrology and Earth System Science, 20, pp. 2965-2973.

+ Show abstract            > pdf

v. K van der Wiel, AJ Matthews, MM Joshi, DP Stevens (2016): The influence of diabatic heating in the South Pacific Convergence Zone on Rossby wave propagation and the mean flow. Quarterly Journal of the Royal Meteorological Society, 142, pp. 901-910.

+ Show abstract

iv. K van der Wiel, AJ Matthews, MM Joshi, DP Stevens (2016): Why the South Pacific Convergence Zone is diagonal. Climate Dynamics, 46, pp. 1683-1698.

+ Show abstract

iii. K van der Wiel, AJ Matthews, DP Stevens, MM Joshi (2015): A dynamical framework for the origin of the diagonal South Pacific and South Atlantic Convergence Zones. Quarterly Journal of the Royal Meteorological Society, 141, pp. 1997-2010. Featured article.

+ Show abstract

ii. MM Joshi, M Stringer, K van der Wiel, A O'Callaghan, S Fueglistaler (2015): IGCM4: A fast, parallel and flexible intermediate climate model. Geoscientific Model Development, 8, pp. 1157-1167.

+ Show abstract            > pdf

i. W Hazeleger, X Wang, C Severijns, S Ştefănescu, R Bintanja, A Sterl, K Wyser, T Semmler, S Yang, B van den Hurk, T van Noije, E van der Linden, K van der Wiel (2012): EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Climate Dynamics, 39, pp. 2611-2629.

+ Show abstract

+ Show more publications

Curriculum Vitae

A pdf-version of my C.V. is available here.

Contact

Dr Karin van der Wiel
Royal Netherlands Meteorological Institute
Postbus 201
3730 AE De Bilt
Netherlands

Phone: +31 (0)30 2206 783
E-mail: wiel@knmi.nl

Google Scholar: list of publications
ResearchGate: personal profile
Twitter: karin_vdwiel