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SCIENCE FOR SOCIETY Rising seas and stronger storms due to climate change pose significant threats to
coastal communities. To effectively plan for adaptation against these events, local climate information is
essential. Our study uses storylines—detailed narratives of potential high-impact events—to evaluate adap-
tation strategies based on local data. We use cyclone Idai in Beira, Mozambique, as a case study of a power-
ful cyclone that has caused extensive damage to a coastal city and imagine how these impacts would change
under multiple scenarios. Then we calculate the reductions in impacts due to different adaptation strategies.
We find that climate change and higher tides greatly increase Idai’s impacts. The effectiveness of the adap-
tation strategies considered varies considerably, with some significantly reducing impacts. This approach
empowers communities to visualize and understand the impacts of future extreme weather events and
make informed decisions on how to best adapt against these events.
SUMMARY
Coastal settlements, facing increasing flood risk from tropical cyclones (TCs) under climate change, need
local and detailed climate information for effective adaptation. Analysis of historical events and their impacts
provides such information. This study uses storylines to evaluate adaptation strategies, focusing on cyclone
Idai’s impact on Beira, Mozambique, under different climate conditions and tidal cycles. A storyline of Idai
under 3�C warming increases flood impacts by 1.8 times, while aligning Idai with spring tides amplifies these
by 21 times. Combining both conditions increases impacts beyond 37 times. An adaptation strategy
combining flood protection and accommodation measures reduces impacts by maximum 83%, while a
seawall strategy reduces these by 10%. By offering localized, detailed information, storylines can be used
to measure the effectiveness of adaptation strategies against extreme events, evaluating their robustness
across different scenarios, and quantifying residual impacts, complementing traditional climate risk assess-
ments for informed decision-making.
INTRODUCTION

Human settlements in coastal areas around theworld face signif-

icant threats from tropical cyclones (TCs).1,2 TCs cause exten-

sive floods in coastal regions through heavy precipitation and

storm surges,3–5 which lead to casualties, property damage,

and on longer timescales exacerbate poverty and hinder devel-

opment in affected areas.6 Climate change is expected to in-

crease the flood hazard from TCs globally,7,8 mainly through

sea-level rise (SLR)9,10 and more extreme precipitation.11,12

This increased risk is particularly severe for low-income and
Cell Reports Sustainability 2, 100270, Janu
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vulnerable regions,13–15 where local adaptation capacities are

often limited.16,17 Consequently, the provision of localized and

actionable climate information becomes imperative to support

effective coastal adaptation.18

There is a gap between traditional climate sciences and deci-

sion-making.19–21 Traditional approaches use probabilities to

estimate future climate projections. These projections carry

considerable uncertainty and may impose limitations on

exploring the full range of outcomes including the less likely

ones.19,20,22 This is further exacerbated at the local scale, where

uncertainties in the climate system, but also in human and
ary 24, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. General framework of the study

(A) The modeling framework connecting meteoro-

logical conditions, such as wind speed and pre-

cipitation, to compound flood and impact.

(B) The four hydrometeorological scenarios

considered: baseline, 3C, springtide, and 3C-

springtide.

(C) The three adaptation strategies for the city of

Beira: no adaptation, hold the line, and integrated

strategies. The red lines indicate walls and dikes;

the orange polygon indicates the port region to be

elevated, and the yellow polygon indicate the

coastal area to retreat from (see supplemental

methods for details).
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environmental aspects increase.23–25 Yet, at this scale extreme

events, e.g., TCs, generate impacts to society, requiring adapta-

tion strategies to be implemented at a corresponding scale.24,26

Therefore, probabilistic approaches relying on future climate

projections might not fully satisfy the needs for effective adapta-

tion and decision-making at the local scale.27,28

An alternative approach to these probabilistic approaches is

the use of event storylines.29 Storylines, in this context, are phys-

ically plausible narratives of an event, considering their meteoro-

logical and climatic context and societal implications, without

assessing prior probabilities of the events or their drivers.29

The potential to analyze detailed sequential hazard-to-impact

chains allows storylines to serve as a bridge between global

climate projections and local scale impacts.21,23,26 Their contri-

bution to providing decision-oriented information is achieved

by expanding a reference event with alternative realizations un-

der explicit assumptions on all—also non-climatic—drivers of

the impact, offering a clear and meaningful way to assess and

communicate potential impacts under different conditions to de-

cision makers.28,30 Previous studies have adopted storylines to

explore the effects of climate change for multiple impact sectors

e.g., van der Wiel et al.,31 Goulart et al.,32 and Ciullo et al.33

In flood modeling, risk-based approaches are commonly em-

ployed to identify flood risk and obtain cost-effective adaptation

measures.34,35 However, they suffer from uncertainty in flood

event probabilities36 and underestimate the significance of

low-probability high-impact events.37 Incorporating climate

change projections adds further uncertainty.38,39 Scenario-

based approaches, which include storylines, offer an alternative

to address the need for robust solutions amidst these uncer-

tainties.39–41 For coastal flooding, storylines were applied to effi-

ciently stress-test flood scenarios,42 to assess impacts from

alternative flood events,43 and to explore generic adaptation op-
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tions across different regions.44 However,

using storylines to inform localized deci-

sion making through the integration of

local adaptation strategies against

specific high-impact events is not yet

common practice.

This study uses storylines to evaluate

the effectiveness of different local adapta-

tion strategies against a high-impact

event. Specifically, we investigate flood
levels and societal impacts from TC Idai (2019) on the city of

Beira, Mozambique. Our storylines are built using four different

hydrometeorological scenarios (Figure 1), including climate

change effects on precipitation and SLR, and changes in the

timing of the storm relative to tidal cycles. We consider three

local coastal adaptation strategies reflecting different ap-

proaches to flood protection. Our modeling framework spans

the event’s meteorological conditions, compound flooding using

a hydrodynamic model, and the flood impacts on Beira, specif-

ically population exposure and building damage via an object-

based impact model (details for all steps in methods).

RESULTS

Flood impacts from Idai in Beira substantially increase
with climate change and spring tides
We evaluate the hazards and impacts of TC Idai in Beira for four

hydrometeorological scenarios. Idai, one of the strongest storms

ever recorded in Southern Africa, caused extensive damage in

Beira, Mozambique in 2019 (see methods for more details). In

the hydrometeorological baseline scenario, which reflects the

historic event, widespread compound coastal flooding occurs

in Beira and specifically along its west coast (Figure 2A). Idai

originally made landfall during neap tides, and having the storm

coincide with spring tides—the springtide scenario—leads to a

substantially larger inundation extent and depth (Figure 2B). A

3�C climate change by 2100 (3C scenario) leads to an increase

in flood extent and depth through precipitation increase and

SLR (Figure 2C). The 3C scenario shows smaller flood increases

compared with the springtide scenario. This is because SLR in

3C scenario leads to lower increase in water levels (0.59 m)

than the tidal effect in the springtide scenario (1.24 m difference

between neap and spring tides). Ultimately, the combination of



Figure 2. Flood maps of Idai in Beira

Flood hazard maps of TC Idai under different hy-

drometeorological scenarios: (A) baseline, (B)

springtide, (C) 3C, and (D) 3C-springtide scenarios.

Different shades of blue indicate flood depth. Note

the blue circle in the center is a small lake within the

city bounds.
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these two scenarios (3C-springtide) leads to the largest flood

extent and depth, with most of the study area experiencing

flooding (Figure 2D).

We quantify the flood impacts of Idai in Beira in terms of pop-

ulation exposure and building damage. Our results show that

approximately 5,000 people are exposed to water depths

>15 cm in the baseline scenario (Figure 3; Table 1). The spring-

tide scenario indicates approximately 103,000 people are

exposed (203 the baseline), which is substantially more than

the 9,400 exposed people in the 3C scenario (1.83 the baseline).

The 3C-springtide scenario leads to the highest number of peo-

ple exposed, around 194,000 (373 the baseline). In addition to

changes in flood extent, a noticeable shift toward higher flood

levels for more extreme events is shown (colors in Figure 3).

Fraction of people exposed to high flood levels, representing

depths above 150 cm, go from 1.6% of the exposed population

in the baseline scenario to 14.5% on the 3C-springtide scenario.

Concluding, themore extreme the hydrometeorological scenario

of Idai, the more people are directly exposed, and their exposure

is to increasingly severe hazards.

Economic damage shows similar patterns to population expo-

sure (Figure 3B). The baseline scenario indicates damages of

USD 2.73million in Beira. The springtide scenario presents dam-

ages of USD 61 million, an increase of 22 times the baseline,

and more than the damages in the 3C scenario, USD 4.6 million

(1.73 the baseline). As a consequence of both spring tides and

3C climate scenario, the 3C-springtide peaks at USD 152million,

which is 563 the baseline, showing non-linear compounding

effects.

Our local scale study enables us to examine impacts at the

building level and assess how specific groups, such as informal

settlements, are affected (Figure 4). These maps reveal that

despite informal settlements not showing high absolute dam-

ages (Figure S4), they are relatively more impacted than the
Cell Reports Sust
rest of the city, with numerous cases of to-

tal losses in more extreme scenarios. For

more details on impacts in informal settle-

ments, see section supplemental informa-

tion Section 1.2.

The integrated strategy reduces
flood impacts more than the hold
the line strategy
We assess how effectively each adapta-

tion strategy (described in detail in

methods) performs across the hydrome-

teorological scenarios (Figure 5). In the

baseline scenario, the hold the line strat-

egy, consisting of an extensive seawall

along the coast of Beira, reduces popula-
tion exposure and building damage by approximately 11% and

7.6%, respectively. The integrated strategy, including dikes

around the city center, port elevation and managed retreat of

wetlands, reduces population exposure and damage by 2%

and 9.5%, respectively. However, for the counterfactual sce-

narios, the integrated strategy consistently outperforms the

hold the line strategy in reducing population exposure: for the

springtide, 3C, and 3C-springtide scenarios, exposure reduc-

tions are 83%, 8%, and 75%, respectively, versus reductions

of 9%, 0.3%, and 3.4%with the hold the line strategy (Figure 5A).

Consequently, we observe a greater decrease in exposure to

high water levels with the integrated strategy compared with

the hold the line strategy (Figure S1). Economic damage follows

a similar trend, with the integrated strategy reducing damages by

84%, 30%, and 81% for the springtide, 3C and 3C-springtide

scenarios, respectively. The hold the line strategy shows lower

reductions of 10%, 0.7%, and 7.4% (Figure 5B). The difference

in damage reduction is also observable spatially in Figure S2.

All results are summarized in Table 2. In informal settlements,

the hold the line has decreasing capacity in reducing impacts

as scenarios become more extreme (Figure S5). On the other

hand, the integrated strategy reduces substantially impacts in

informal settlements, with 60% fewer exposed people and

80% less building damage. This reduction is also higher

compared with the rest of the city (Figure S2). More information

on the effectiveness of adaptation strategies in informal settle-

ments is available on supplemental information Section 1.3.

While none of the included adaptation strategies completely

protects Beira from the impacts from Idai across our tested sce-

narios, the integrated strategy proves more effective than the

hold the line in reducing building damage and population

exposed, especially for the more extreme hydrometeorological

scenarios. The results for this case study demonstrate how

storylines can be used for climate adaptation. They offer insights
ainability 2, 100270, January 24, 2025 3



Figure 3. Impacts of Idai in Beira

(A) Total population exposure and (B) total building

damage in the city of Beira from Idai floodings un-

der different hydrometeorological scenarios. Light

blue indicates water level between 15 and 50 cm,

medium blue 50 and 150 cm, and dark blue above

150 cm.
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on the effectiveness of adaptation strategies against high-

impact events, assessing their robustness across different sce-

narios, and estimating residual impacts.

DISCUSSION

Our study develops storylines of Idai to assess the effectiveness

of different local coastal adaptation strategies under diverse hy-

drometeorological scenarios. These include the effects of

climate change, SLR, and changes in the tidal cycle. We use a

comprehensive modeling framework that includes the event’s

meteorological conditions, compound flood simulation, and the

modeling of population exposure and building damage.

Insights of using storylines for coastal adaptation in
Beira
Our results show that flood impacts in Beira will likely worsen due

to climate change, primarily driven by SLR. These findings align

with existing research showing the threat of rising sea levels to

coastal settlements.45,46 We find that a shift in TC Idai’s timing

to coincide with spring tides could lead to even more severe

flooding. This is because the difference in surge height between

neap tide and spring tide is more than double the projected SLR

by 2100 in a 3�C warming scenario. Our most impactful storyline

of Idai is the combination of both climate change and spring

tides, showing again the strong negative effects of climate

change for Beira and its inhabitants. In addition, it shows that
Table 1. Summary of impacts in Beira under different climate

scenarios

Scenario

Total

exposed

people

Relative

change

Total building

damage

(million USD)

Relative

change

Baseline 5,265 1.00 2.73 1.00

Springtide 103,114 19.59 60.71 22.24

3C 9,479 1.80 4.60 1.69

3C-springtide 194,128 36.87 152.66 55.92

Metrics correspond to total exposed people, the relative change in

exposed people with respect to the baseline scenario, total building dam-

age (in million USD), and relative change based on the baseline scenario.
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climate change is one of multiple contrib-

uting factors to impacts, as explored here

by altering the compound timing of storm

landfall and the tidal cycle. This change in

timing demonstrates the large range of im-

pacts of local extreme events due to inter-

nal variability.25,47,48 Our results highlight
the importance of incorporating internal variability next to the

role of climate change in adaptation planning.49–51

The scope of our study diverges from existing risk-based

studies for Beira, such as Eilander et al.52 and van Berchum

et al.53 Risk-based studies are able to quantify expected annual

flood impacts based on probabilities and to determine cost-

effective solutions. However, they may not fully account for the

complexities of extreme weather events36,37 and climate change

uncertainties.38,39 While Eilander et al.52 identified managed

retreat in highly exposed areas of Beira as the most efficient to

reduce expected annual impacts, van Berchum et al.53 suggest

that coastal defenses are the most effective long-term measure.

Our approach shifts the focus from estimating the most optimal

or cost-effective measures to assessing the performance of

specified local adaptation strategies under different scenarios.

We find that no strategy fully prevents flooding in Beira from

cyclone Idai but that the integrated strategy substantially outper-

forms the hold the line approach in more extreme scenarios. The

wide range of impacts across scenarios and strategies in our re-

sults enable policymakers and stakeholders to visualize the ben-

efits and limitations of different adaptation strategies when

faced with extreme events similar to cyclone Idai under different

scenarios. This includes assessing the robustness of each adap-

tation strategy against the selected events40,41 and quantifying

residual impacts,54,55 which can inform the planning of comple-

mentary measures such as evacuation plans or financial aid

programs.56

Validation of simulations
We faced some challenges in validating our flood results for the

specific event and study area. There are no available data from

coastal water level or rain gauges in Beira during the occurrence

of Idai that could be used to directly compare our results.52 The

main source for flood validation we found was the satellite imag-

ery from the Emergency Management Service (EMS).57 Our

baseline simulations show more extensive inundation than the

satellite imagery, but differences lie mostly on small and shallow

flood areas along narrow streets or between buildings that are

caused by precipitation (Figure S3). Our model setup does not

include drainage systems, which could overestimate rain-driven

flooding. However, satellite imagery has limitations in densely

populated urban areas.58,59,60 found this to be the case for



Figure 4. Damage maps of Beira

Maps of Beira showing relative economic damage

relative to the total value of each building in Beira

for each hydrometeorological scenarios. Black

contours indicate informal settlements.
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cyclone Idai’s impact on Beira, as satellite imagery demon-

strated substantially less flooded areas than what has been

documented in reports and media.61 Another study showed

that a combined 10-year rainfall and 10-year coastal surge event

is expected to cause more extensive flooding in Beira than

observed in the satellite imagery.53 TC Idai is considered to
Cell Reports Sust
have a lower probability than once per

10 years,62 which could further support

that the satellite imagery may have under-

estimated the potential flood extent.

Additionally, we compared our results

with that of Mester et al.60 and found

that our baseline simulation showed less

inundation than theirs and resembled

more closely the satellite imagery (Fig-

ure S3). The super-fast inundation of

coasts (SFINCS) model has been used

and validated in previous works exploring

multiple events and larger areas in

Mozambique and East Africa.52,63,64

Last, we calibrated the meteorological in-

puts to match the historical meteorolog-

ical conditions (see methods). These fac-

tors support the physical plausibility of

our baseline results and suggest that our
setup is suitable for exploring differences in flood hazards and

impacts under alternative storylines.

Limitations and contextualization
While storylines offer an alternative approach to managing

uncertainty in future climate,29 they are still affected by
Figure 5. Effectiveness of adaptation strate-

gies

Reductions in (A) population exposure and

(B) building damage for each adaptation strategy

and hydrometeorological scenario. Plain bars

represent hold the line strategy and hatched bars

represent integrated strategy. Maps of relative

building damage for (C) the hold the line and

(D) integrated strategies under the 3C-springtide

scenario. Black contours show informal settle-

ments.
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Table 2. Summary of impacts in Beira due to Idai under different

scenarios and adaptation strategies

Scenario Impact metric

No

adaptation

Hold

the line Integrated

Baseline total damage

(M USD)

2.73 2.52 2.47

exposed

population

5,264.78 4,670.31 5,157.77

damage

change (%)

0.00% �7.62% �9.55%

population

change (%)

0.00% �11.29% �2.03%

Springtide 3C total damage

(M USD)

60.71 54.48 9.82

exposed

population

103,114.29 93,523.77 16,636.26

damage

change (%)

0.00% �10.26% �83.83%

population

change (%)

0.00% �9.30% �83.87%

total damage

(M USD)

4.60 4.57 3.21

exposed

population

9,478.56 9,445.53 8,689.22

damage

change (%)

0.00% �0.74% �30.15%

population

change (%)

0.00% �0.35% �8.33%

3C-springtide total damage

(M USD)

152.66 141.38 28.47

exposed

population

194,127.91 187,445.08 47,706.85

damage

change (%)

0.00% �7.39% �81.35%

population

change (%)

0.00% �3.44% �75.43%

Impact metrics to total exposed people, total building damage (in million

USD), and the percentual change (%) in exposed people and damage

with respect to the no adaptation strategy.
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uncertainties in climate projections. In our hydrometeorological

scenarios (see methods), the 3C scenario is based on the ex-

pected global warming levels by 2100, which have a consider-

able confidence interval. The corresponding SLR values also

carry uncertainties due to the ice-melting processes consid-

ered,65 and the scenarios could be widely different depending

on which processes are included. As a result, the outcomes of

our storylines could change based on those uncertainties. We

document all assumptions to ensure the storylines are clear

and transparent.

We compare our study with similar storyline studies on

coastal areas and climate adaptation. Qiu et al.42 developed

a storyline framework to stress-test events and scenarios in

an efficient way. They provide recommendations for adapta-

tion and highlight the importance of high resolution simulations

for climate adaptation, but they do not include adaptation in
6 Cell Reports Sustainability 2, 100270, January 24, 2025
their framework. Mester et al.60 also developed storylines of

Idai in Mozambique, but their focus was on human displace-

ments and the potential attribution of climate change to the

historical event, not explicitly considering adaptation in their

setup. Tian et al.66 combined storylines with regret theory to

create a non-probabilistic flood risk framework. By identifying

worst-case scenarios, this framework finds tipping points to

determine the timing of interventions. Their focus on protec-

tion standards differs from our study. We model flood hazards

and impacts at the building level, allowing us to estimate im-

pacts on different groups and quantify residual flood impacts.

Koks et al.44 accounts for adaptation options in their story-

lines, but the study is based on generic and uniform adapta-

tion options that might not be suited for decision-making at

the local scale. In our study, there is special attention to the

local scale, as it has an important role in promoting climate

adaptation.21

Our analysis focuses exclusively on direct impacts, such as

building damage and population exposure. Indirect impacts of

extreme events are also relevant for society but are generally

less studied. Testing adaptation strategies for indirect impacts

produces different insights, as shown by M€uhlhofer et al.67

They used a framework to test different adaptation strategies

against the historical Idai event, focusing on their effectiveness

in protecting against different indirect impacts and identifying

potential synergies and trade-offs. Future work could combine

physical climate storylines with indirect impacts to explore

different indirect impacts, such as interrupted services, health

impacts and economic disruption due to supply shortages,68,69

under a relevant set of future climate scenarios.

In this study, we use ‘‘robustness’’ to refer to how well an

adaptation strategy performs across a variety of scenarios.39–41

Our focus on a single high-impact event, despite the multiple

scenarios built around it, implies certain limitations regarding

evaluating adaptation strategies. Adaptation strategies de-

signed for a specific event may not provide adequate protection

against other events, potentially leading to maladaptation

cases.70 Thus, future studies on storylines for adaptation could

include multiple (and physically different) events. Adapting to

very-high-impact events often requires substantial resources,

which may be financially unfeasible.71 Less severe yet more

frequent events also lead to relevant socio-economic impacts

and adapting against these events is typically more cost effec-

tive, which is one of the purposes of risk-based approaches.

This highlights the potential for combining risk-based and story-

line approaches, as previously suggested by Shepherd72: risk-

based approaches can identify cost-effective adaptation strate-

gies that offer some protection across a wide set of moderate

events, while storylines can stress-test these strategies against

extreme events, quantify residual impacts and help design com-

plementary adaptation measures.

This study analyses the physical aspects of climate change,

without incorporating socio-economic or land use changes,

which greatly influence vulnerability and exposure, and there-

fore impacts.44 Exploring these and other relevant drivers of

local change could lead to a more comprehensive impact anal-

ysis of future scenarios and adaptation strategies. We adopt

three adaptation strategies in our study, but future work could



Figure 6. Location ofMozambique andBeira

(A) The location of Mozambique (dark gray) and the

city of Beira (red square).

(B) Expanded view of Beira with buildings footprints

(black polygons). Source: OpenStreetMap.80
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evaluate a broader range of potential adaptation options for the

study area, including drainage systems, nature-based solu-

tions, and evacuation plans. Our adaptation strategy designs

are based on recommendations for the city of Beira from local

sources.73 Some adaptation measures, such as the managed

retreat included in the integrated strategy, carry considerable

social implications.74–76 The findings in this study are mostly

exploratory, and actual adaptation could emerge from collabo-

rative efforts directly involving the communities and stake-

holders impacted.74

Storylines for decision making on adaptation
To effectively support local adaptation and decision-

making, climate information needs to be usable, relevant, and

local.20,21,24 Our study extends the storyline approach to include

adaptation strategies specifically designed for local scale deci-

sion-making. The purpose of such method differs from risk-

based approaches, which use probabilities to quantify annual

flood damages and to find cost-effective adaptation solutions

across a wide range of events. Instead, the storylines with adap-

tation strategies explore the potential impacts of high-impact

events across relevant possible futures (‘‘what if’’ scenarios)

and the effectiveness of specific local adaptation measures.

This allows for the identification of strategies that are robust

across the scenarios tested. Additionally, they can also estimate

residual impacts, which support the planning of complementary

adaptation measures, including early warning systems and

evacuation plans,56 and post-disaster recovery mechanisms

such as insurance schemes.77 By visualizing these potential im-

pacts and consequences to different adaptation strategies,

stakeholders can make more informed decisions.

Nevertheless, this approach also has limitations for decision-

making. Relying on a few high-impact events may not guarantee

solutions that are effective across a wider range of events, and

the solutions could prove costly due to the extreme nature of

the events. A potential way to address these limitations is to

combine this approach with the risk-based approach.72 The

risk-based approach can determine a set of cost-effective solu-

tions, while the storylines can be used to stress-test them under

different scenarios. Consequently, by including specific adapta-

tion strategies to local contexts, storylines offer a complemen-

tary perspective to traditional probabilistic approaches for in-

forming climate adaptation strategies against high-impact

events.
Cell Reports Sust
METHODS

Overview
Our storylines explore two components

of the event and its impacts: themeteoro-

logical hazard and adaptation strategies
in the city of Beira (Figure 1). We have developed a modeling

framework that capturesmeteorology, coastal flooding, and so-

cietal impacts (economic damage to buildings and exposed

population) (Figure 1). Based on four distinct hydrometeorolog-

ical scenarios and three local adaptation strategies, we develop

twelve unique storylines. They enable an exploration of the po-

tential impacts of TC Idai on the city of Beira, and the effective-

ness of different adaptation strategies in reducing these

impacts.

Case study
We explore the impacts of TC Idai on the city of Beira,

Mozambique. TC Idai was one of themost impactful TCs to occur

in Southern Africa, affectingmainlyMozambique, Zimbabwe, and

Malawi. In Mozambique, 598 casualties were reported, and a

further 1,600 people were reported injured. Furthermore, it

caused damage or complete destruction to nearly 198,000

homes, decimated crop fields, triggered a cholera epidemic,

and left an estimated 1.85 million people affected.78

TC Idai originated off the East coast of Mozambique on March

4, 2019, and it briefly reached category 4 with peak wind speeds

of 59 m/s.79 Idai made landfall twice, with the second one being

March 14 near Beira city, the fourth largest city in Mozambique

(Figure 6). The region experienced severe impacts mainly from

extreme wind speeds and compound coastal flooding, driven

by intense precipitation and the storm surge. Though storm

surge levels in Beira reached approximately 4 m, the event coin-

cided with a neap tide period which had a limiting effect on water

levels.52,53

Hydrometeorological scenarios
The Idai storylines are built based on hydrometeorological sce-

narios designed to explore both the influence of internal vari-

ability and climate change around the event. We consider four

scenarios:

d the baseline scenario reflects the event as it occurred in

2019. Note that also in this scenario there is some climate

change component: global temperatures lie at 1.2�C
above pre-industrial levels, and there is a SLR of 5 cm rela-

tive to the 1995–2014 average.

d the springtide scenario, a counterfactual scenario that sim-

ulates TC Idai occurring in conjunction with spring tides.

This introduces an element of internal variability, reflecting
ainability 2, 100270, January 24, 2025 7
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natural fluctuations in environmental conditions that can

significantly influence local flooding. It involves adjusting

the timing of Idai by 4 days to coincide with the spring

tides, while maintaining climatological conditions identical

to the baseline.

d the 3C scenario, a future counterfactual scenario assuming

a global temperature rise of 3�C above pre-industrial levels

by 2100. This scenario includes a SLR of 0.59 m and a pre-

cipitation increase of 13% compared with the baseline.

This scenario aligns with the global warming projections

of 3.2�C by 2100 based on current Nationally Determined

Contributions (NDCs)81.

d the 3C-springtide scenario, a compound scenario that

combines the springtide event with the future 3�C global

warming condition.

SLR data were derived from the sixth assessment report (AR6)

from the Intergovernmental Panel on Climate Change (IPCC).82

We calculate the change in precipitation in a warmer climate us-

ing theClausius-Clapeyron (CC) relation, which establishes a 7%

increase in saturation vapor pressure for each degree of warm-

ing. This is in line with findings from recent studies on the in-

crease of precipitation rates of TCs due to climate change in

the southern Indian Ocean.10,83

Adaptation strategies
This study assesses the effectiveness of three local coastal

adaptation strategies in Beira city. They are based on previous

local reports73 and designed to provide a clear comparison be-

tween distinct approaches to reduce the societal impacts of

the Idai event:

d No adaptation strategy, where no further protective mea-

sures are adopted.

d Hold the Line strategy (Figure 1), focused on protecting the

entire land area through the construction of hard infrastruc-

ture along the coastline74. Here, it consists of a 2 m wall

along the Beira coastline.

d Integrated strategy (Figure 1), which combines infrastruc-

ture with management and accommodation mea-

sures.74,84 In this study, it consists of a 2-m wall along

part of the coast and around the center of the city, a

managed retreat of settlements from the vulnerable

coastal wetlands in the city’s southwest, and raising the

port’s elevation by 2 m.

The 2-m height adopted for seawalls and port elevation is

based on the 100-year return period surge projections for the re-

gion, as identified in Eilander et al.52 All measures, including the

managed retreats, are based on recommendations from a local

report by theMaputo National Institute for Disaster Management

(INGC).73Managed retreats carry societal implications, which re-

quires careful planning and stakeholder involvement.74

Modeling framework
Meteorological data and evaluation

Idai meteorological data for mean sea-level pressure (MSLP),

wind speed, and precipitation are obtained from the high res-

olution Integrated Forecast System (IFS) model of the
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European Centre for Medium-Range Weather Forecasts

(ECMWF). It is based on a coupled atmosphere-wave-ocean

model,85 has hourly temporal resolution, and offers the highest

spatial resolution among global forecasts, 0.1�, which im-

proves TC simulation.10,86,87 Previous studies have assessed

the capabilities, advancements, and limitations of IFS in simu-

lating TCs.85,86,88–90

There are limited observation data for TC Idai and its impacts

in Beira.53,60 We adopt the International Best Track Archive for

Climate Stewardship (IBTrACS)91 to evaluate the IFS-simulated

minimum MSLP and maximum wind speeds, and the integrated

multi-satellite retrievals for GPM (IMERG-GPM)92 for precipita-

tion. Subsequently, we align the values from IFS with observed

values, so that floods and impacts in Beira are more accurately

simulated. This involves adjusting the model’s mean values

around the storm’s center during its landfall between March

14th and 15th to match the evaluation data.

Compound coastal flooding modeling

We use the SFINCS model93 for both offshore and onshore hy-

drodynamic simulation. SFINCS is a reduced-physics solver

that accurately simulates compound coastal flooding by solving

simplified two-dimensional overland flow equations. Its suit-

ability for simulating compound flooding resulting from TCs

has been demonstrated in previous studies.43,52,63,93,94 A full

description of the model is available at Leijnse et al.93 The

offshore simulation is forced with MSLP and wind speed data

from IFS, generating water levels along the coastline of Beira.

The onshore simulation is then forced with the generated water

levels and precipitation to produce inland flooding levels in Beira.

The surface elevation is obtained from a merged dataset that

combines several local and global datasets, achieving a 5-m res-

olution in Beira.63 The roughness coefficients are sourced from

the Copernicus Global Land Service95 and infiltration rates

derived from the GCN250 dataset.96 For the management and

processing of input data, we use the Python package Hy-

droMT.97 More information on the parameters used in our

models is available on supplemental information section 1.1.

Impact modeling

We use the Delft-FIAT impact model52,98 to quantify building

damages and the population exposed to floods under the

different storylines. Delft-FIAT combines flood extent and depths

with exposure and vulnerability data, enabling impact modeling

at the individual building level. For building exposure, including

location and footprint, we use data fromOpenStreetMap.80 Pop-

ulation data from WorldPop 2020 UN adjusted database at

100-m resolution99 are downscaled to the building level by using

the buildings footprints size as weights. Vulnerability curves to

estimate the economic damages due to flooding for different

types of building are obtained from Huizinga et al.100
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Data and code availability

The code and data generated for this experiment is available at https://github.

com/dumontgoulart/storylines_for_adaptation or at https://doi.org/10.5281/

zenodo.14001572. SFINCS is available at https://sfincs.readthedocs.io and

HydroMT is available at https://deltares.github.io/hydromt/. Delft-FIAT is avail-

able at https://github.com/Deltares/Delft-FIAT.
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